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QUESTION ONE (20 MARKS)
(a). (i). Define the spectral density function of a time series (4 marks)

(ii). Consider the AR(1) time series. Show that its spectral density
function given by

fw) =

0.2

T(1-20, cos w + B3) (8 marks)

where w and ¢, are some constants

(b). Consider the process Yi = € + 2 €1 + 0.8 Y;t-1 where {€4 is sequence of
independent random variables with mean O and variance o2 Determine

the

auto-correlation function P r k=0,1,2,3,... (8 marks)

QUESTION TWO (20 MARKS)

(@). Consider the AR(2) process given by Xt = a1Xt1 + @2Xt-2 + €t where a;
and ay are some real constants and {ei} is a random variable with mean
zero and variance o2. Find the condition for the process to be stationary.

(6 marks)

2
(b). Suppose “/;1 + Ay < 0, show that the auto-correlation coefficient

solution of X:is given by

- " sin sin (Bh+¢) +@)
p(h) = (- ay)? sin
? (14 marks)
where cos § =—2— and cot ¢ = 1+a2

2(—0_'2) —az



QUESTION THREE (20 MARKS)

(a). Consider the MA(1) process X given by Xe= e + 0, where {et}is the

2
white noise process with zero mean and variance, 7" Show that the
corresponding normalized spectral density function

fra=2 {1+ 2% Cos 2} & marks
(b). Consider the AR (2) process
X, =X, _,— 05X, .+ ¢
(i). Determine whether the process is stationary
(ii). Determine the auto correlation function for the process. (12marks)

QUESTION FOUR (20 MARKS)

(X:

(@). Let is white noise, A is some

constant. Show ) is stationary. (4 marks)

(b). Consider the AR MA(2, 2) process given by

— — — —— cC .
Xt Xt—l X -2 €+ €1 6 G where  is some constant

and {e:} is a sequence of white noise. Show that the process is invertible.

(6 marks)

(c). Consider the process (Xt) given by Xt =X .t e

2
e.t. ; ; . .
where {e:} is the white noise process with mean zero and variance o

(i). Find the mean and variance of the process

(ii). Hence, or otherwise show that it is non-stationary



(iii). Show that the process

Yt=AXt

is stationary.

(iv).Determine the auto correlation function, and hence, the correlogram

of (Yt) (10 marks)

QUESTION FIVE (20 MARKS)

(@). Describe the main stages in setting up the Box-Jenkens forecasting

model.

(8 marks)
(b). For the model (1-B)(1-0.2B)X; = (1 - 0.5B)et where {eg is a sequence of
white noise with mean zero and variance 02, and B is the backward shift
operator, find forecast for one and two stages ahead and recursive

expressions for 3 or more steps. (12 marks)



