MUSINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY
UNIVERSITY EXAMINATIONS 2013/2014 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATIONS
FOR THE DEGREE OF BARCHELOR OF TECHNOLOGY IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE:
COURSE TITLE:

DATE:

INSTRUCTION TO CANDIDATES

- This paper contains 5 questions
- Attempt question 1 and any other THREE questions - Marks for each question are as indicated.

Time: 3 hours
Q. 1 (a) Define the following terms used in theories of structures:

1.	Node
2.	Element
3.	Discrete
4.	Degree of freedom

(b) Explain the three steps of direct stiffness matrix
(c) Derive the element stiffness matrix and explain all the terms of the matrix.
Q.2. Figure 1 shows the nodal forces and displacements at each node. Obtain the global stiffness matrix for the structural system.
(15 marks)

Figure 1
Q. 3.

Given the spring system shown in figure 2 above

$$
\begin{aligned}
& \boldsymbol{k}_{\boldsymbol{l}}=300 \mathrm{~N} / \mathrm{mm}, \boldsymbol{k}_{\boldsymbol{2}}=200 \mathrm{~N} / \mathrm{mm}, \boldsymbol{k}_{3}=300 \mathrm{~N} / \mathrm{mm} \\
& \boldsymbol{F}_{\boldsymbol{I}}=0 \mathrm{~N}, \boldsymbol{P}=800 \mathrm{~N}, \boldsymbol{u}_{\boldsymbol{I}}=\boldsymbol{u}_{\boldsymbol{4}}=0
\end{aligned}
$$

Find: (a) The global stiffness matrix
(b) Displacements of nodes 2 and 3
(c) The reaction force at node 1 and 4
(d) The force in the spring 2
(15 marks)
Q.4. For the beam shown in figure 3, find the rotations of joints 2 and 3 and the bending moment diagram. Take. $E I=6 \times 10^{3} \mathrm{kNm}^{2}$.
(15 marks)

Figure 3
Q.5. For the truss shown in figure 4 determine the displacement at nodes 2 and 3. (15 marks)

Figure 4

