# MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST) 

MAIN CAMPUS

# UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR <br> SECOND YEAR FIRST SEMESTER EXAMINATIONS 

FOR THE DIPLOMA
IN
CIVIL ENGINEERING AND WATER TECHNOLOGY

## COURSE CODE: DCE 073

COURSE TITLE: THEORY OF STRUCTURES I
DATE: THURSDAY 31 st JANUARY 2019 TIME: 3.00PM - 5.00PM

## INSTRUCTIONS:

1. This paper contains FIVE questions
2. Question ONE is COMPULSORY
3. Attempt any other THREE questions
4. Marks for each question are indicated in the parenthesis.
5. Examination duration is $\mathbf{2}$ Hours

MMUST observes ZERO tolerance to examination cheating

## Question ONE (25 Marks)

a) Classify the structures in Fig 1a and Fig 1b as statically determinate or statically indeterminate. If statically indeterminate, report the number of degrees of indeterminacy.


Fig 1a


Fig 1b
[4 Marks]
b) Differentiate between:
i. Ductile materials and brittle materials
ii. Arches and suspension bridge
iii. Young's modulus and Modulus of rigidity
[6 Marks]
c) A bar of 30 mm diameter is subjected to a pull of 60 kN . The measured extension on gauge length of 200 mm is 0.1 mm and change in diameter is 0.004 mm . calculate:
i. Youngs' modulus
ii. Poisons ratio
iii. Bulk modulus
[6 Marks]
d) An I-section has the following dimensions in mm units:

Bottom flange $=300 \times 100$
Top flange $=150 \times 50$
Web $=300 \times 50$
Determine mathematically the position of center of gravity of the section.
e) Define influence line and explains its significant in structural design
f) A cantilever of length 2.0 m carries a uniformly distributed load of $1 \mathrm{kN} / \mathrm{m}$ run over a length of 1.5 m from the free end. Draw the shear force and bending moment diagrams for the cantilever
[3 Marks]

## Question TWO ( 15 Marks)

Describe the stress-strain curve of a typical tensile test for mild steel
[15 Marks]

## Question THREE ( 15 Marks)

A beam 10 m long and simply supported at each end has a uniformly distributed load of $1000 \mathrm{~N} / \mathrm{m}$ extending from the left end up to the center of the beam. There is also an anti-clockwise couple of 15 kNm at a distance of 2.5 m from the right end. Draw the S.F and B.M diagrams. [15 Marks]

## Question FOUR (15 Marks)

Figure 2 shows a cantilever truss having a span of 4.5 meters. It is hinged at two joints to a wall and is loaded as shown


Find the forces in all the member of the truss.
[15 Marks]

## Question FIVE (15 Marks)

Draw the shear force and bending moment diagram for simply supported beam of length 9 m and carrying a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ for a distance of 6 m from the left end. Also calculate the maximum B.M. on the section.
[15 Marks]

