

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS **2023/2024 ACADEMIC YEAR** THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE

OF

BACHELOR OF MECHANICAL AND INDUSTRIAL ENGINEERING

COURSE CODE:

MIE 361

COURSE TITLE: MACHINE DESIGN II

MAIN PAPER

DATE: 20th December 2023

TIME: 1200 - 1400 HRS

INSTRUCTIONS TO CANDIDATES

- 1. There are TWO sections (A&B) in this paper.
- 2. Question ONE has THREE parts, and is compulsory
- 3. Choose to answer THREE more questions in part TWO
- 4. Paper lasts 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over

SECTION A

(carries a total of 30 marks)

QUESTION ONE

(10 marks)

Q (1). A shaft rotating at constant speed is subjected to variable load. The bearings supporting the shaft are subjected to stationary equivalent radial load of 3 kN for 10 per cent of time, 2 kN for 20 per cent of time, 1 kN for 30 per cent of time and no load for remaining time of cycle. If the total life expected for the bearing is 20×10^6 revolutions at 95 per cent reliability, calculate dynamic load rating of the ball bearing.

QUESTION TWO

(10 marks)

Q2. Give at least SIX Advantages and FOUR Disadvantages of Rolling Contact Bearings Over Sliding Contact Bearings.

QUESTION THREE

(10 marks)

Q3 a). List the advantages of gear drives as compared to other drives.

[5]

(b). Name FIVE types of couplings

[5]

SECTION B

(carries a total of 30 marks)

QUESTION FOUR

(10 marks)

Q4. A shaft is transmitting power,N = 100 kW at a speed, N = 160 rpm. Find a suitable diameter, $\bf d$ for the shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear stress to be τ = 70 MPa.

QUESTION FIVE

(10 marks)

Q5. A pump is driven by an electric motor through an open type flat belt drive. Determine the belt specifications for the following data: Motor pulley diameter, $(d_c) = 300$ mm, Pump pulley diameter $(d_1) = 600$ mm.

Motor pulley diameter, $(d_s) = 300$ mm, Pump pulley diameter $(d_L) = 600$ mm . Coefficient of friction, (μ_s) for motor pulley = 0.25, Coefficient of friction (μ_L) for pump pulley = 0.20 . Centre distance between the pulleys, C=1000 mm; Rotational speed of the motor=1440 rpm; Power transmission = 20kW; density of belt material $(\rho) = 1000 \text{ kg/m}^3$; allowable stress for the belt material $(\sigma_b) = 2 \text{ MPa}$; thickness of the belt, $t_b = 5 \text{ mm}$.

QUESTION SIX

(10 marks)

Q6. A design of a wheel of a Toyota 4D Hilux pick-up is shown in fig. Q6. The conical shaft is to be bolted firmly to the frame chassis of the vehicle. Study the assembly carefully; and you should find mistakes in it. Re-sketch the assembly in order to correct at least 10 mechanical design mistakes in this drawing. [10]

Fig.Q6

QUESTION SEVEN

(10 marks)

Q##7 Design the rectangular key for a shaft of 50 mm diameter. The shearing and crushing stresses for the key material are 42 MPa and 70 MPa. [10]