

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF SCIENCE IN MECHANICAL AND INDUSTRIAL ENGINEERING

COURSE CODE: MIE 201

COURSE TITLE: CIRCUIT THEORY

DATE: THURSDAY 07/12/2023 TIME: 12:00 PM - 2:00 PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 5 Printed Pages. Please Turn Over.

Question One (30 marks)

- (a) Define the following terms:
 - i) Mesh
 - ii) Loop
 - iii) Node

[3 marks]

- (b) If $100 \angle 0^\circ$ a.c is supplied to a circuit consisting of a 3Ω resistor and 4Ω capacitive reactance connected in series, determine the voltage across each element in the circuit. [3 marks]
- (c) From fig. 1.1 below, use mesh analysis to find the mesh currents and voltage v_o . [5 marks]

Figure 1.1

(d) With the help of illustrations, use the superposition principle to determine the value of i_x .

[6 marks]

(e) For the circuit in Figure 1.3 below, compute the voltage across each current source using the supernode method of analysis. [6 marks]

Figure 1.2

Figure 1.3

(e) A 230V, 50Hz a.c. supply is applied to a coil of 0.06H inductance and 2.5Ω resistance connected in series with a 6.8μ F capacitor. Determine;

i) Impedance [3 marks]
ii) Current flowing through the circuit [1 mark]
iii) Phase angle between current and voltage [2 marks]
iv) Power factor. [1marks]

Question Two (20 marks)

a) Name and state Kirchhoff's laws.

[3 marks]

- b) Determine the value of current in each branch when three resistors of values 3Ω , 2Ω and 4Ω are connected in parallel. The total input current fed to the resistors is 8A. [4 marks]
- c) In the circuit below, use resistance combination methods and current division to find i_1, i_2 and v_3 . i_1 i_2 [7 marks]

Figure 2.1

d) Determine the current i_1 in the circuit below using supermesh method.

[6 marks]

Question Three (20 marks)

(a) i) State Thevenin's Theorem.

[1 mark]

- ii) From Figure 3.1, use Thevenin's Theorem to find:
- I. V_{TH} and R_{TH} , [3 marks] II. the load current I_L flowing through the circuit, [2 marks] III. the load voltage across the load resistor in the circuit below. [2 marks]

Figure 3.1

(b) i) Explain mesh analysis.

[2 marks]

ii) Using the method explained above, determine the mesh currents in fig.3.2. [4 marks]

(c) For the single-node-pair circuit below, find i_A , i_B and i_C .

[6 marks]

Figure 3.3

Question Four (20 marks)

- (a) The peak value of a sinusoidal voltage is 12V and it has a periodic time of 16milliseconds. Determine the:
 - i) r.m.s value [1mark]
 - ii) average value [1mark]
- iii) frequency of supply. [1mark]
- (b) A series RLC circuit containing a resistance of 12Ω , an inductance of 0.15H and a capacitor of 100μ F are connected in series across a 100V, 50Hz supply.
 - i) draw the circuit, [1 mark]
 - ii) calculate the total circuit impedance, [3.5 marks]
 - iii) determine the circuit current and voltage across each component, [2.5 marks]
 - iv) calculate the power factor, [1 mark]

v) draw the voltage phasor diagram.

[2 marks]

- (c) For the circuit in fig. 4.1, calculate:
 - [4.5 marks] i) the current I, [1.5 marks]
 - ii) voltages v_R , v_L and v_C in phasor form,

the total power factor. iii)

[1 mark]

Figure 4.1

Question Five (20 marks)

a) Use mesh analysis to determine the current i_1 in the circuit of fig.5.1. [5 marks]

- b) Calculate the current through the 2Ω resistor in Fig. 5.2 by making use of source transformations to first simplify the circuit. [5 marks]
- c) Given that the elements $v_{s1}=-120\,V$, $v_{s2}=30\,V$, $R_1=30\,\Omega$ and $R_2=15\,\Omega$ are all connected in series in a circuit, compute the power absorbed by each element. [5 marks]
- d) Considering the network shown in fig.5.3 below, find the branch currents I_1 , I_2 and I_3 , using the supernode analysis method. [5 marks]

