

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL AND INDUSTRIAL ENGINEERING

COURSE CODE: MIE 453

COURSE TITLE: CONTROL ENGINEERING

DATE: WEDNESDAY 06/12/2023 TIME: 12: 00 PM - 2:00 PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY) (30 MARKS)

1. In a table format differentiate between open loop and closed loop control systems.

[4 Marks]

2. Consider the block diagram below.

- i. Simplify the block diagram using the block diagram reduction rules
- ii. Determine the transfer function of the system.
- iii. Convert the block diagram into its equivalent signal flow graph

[10 Marks]

- 3. Differentiate the following terms as applied in system response and illustrate their relationship with reference to frequency response and time response.
 - i. Bandwidth and rise time
 - ii. Resonant peak and peak overshoot

[4 Marks]

4. Consider a system described by the signal flow graph as shown below. Find its transfer function, $G(s) = \frac{Y(s)}{U(s)}$, using the Mason's Gain formula

[8 Marks]

5. Differentiate between the necessary condition and sufficient condition for stability in Routh-Hurwitz Stability Criterion.

[4 Marks]

QUESTION TWO (20 MARKS)

a) Consider the system shown in Figure 1 below. To improve the performance of the system feedback is added to this system, which results in Figure 2. Determine the value of K so that the damping ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and the nominal value of the systems shown in Figures 1 and 2.

[10 Marks]

- b) A single degree of freedom spring-mass-damper system has the following data: Spring stiffness = 20 kN m⁻¹, mass = 0.05 kg, and damping coefficient = 20 Ns m⁻¹. Determine the following
 - i. The undamped natural frequency in rad s⁻¹ and Hz
 - ii. The damping factor
 - iii. The damped natural frequency in rad s⁻¹ and Hz.

[6 Marks]

c) Which type of standard test signal is widely used the time domain for analyzing the control systems from their responses and discuss the reasons why it's widely used.

[4 Marks]

OUESTION THREE (20 MARKS)

a) Sketch the polar plot for the following open loop transfer function with unity feedback

$$G(s) = \frac{1}{s(s+1)}$$

[8 Marks]

- b) Consider a mechanical system shown below of a simplified version of an automobile or motorcycle suspension system. Given that m_2 is mass of the car, m_1 is unsprung mass k_2 and k_3 are the suspension, k_4 is tire stiffness, and k_4 is the ground motion displacement input.
 - i. Obtain the transfer function model of the mechanical system shown in the following Figure if the input u is a displacement input. Assume that displacements x and y are measured from their respective steady-state positions in the absence of the input u
 - ii. Represent the above mechanical system in a block diagram

[6 Marks]

c) Using clear block diagrams highlight on the three compensator configurations

[6 Marks]

QUESTION FOUR (20 MARKS)

- a) Construct the Nyquist diagram for the control system shown below and determine:
 - i. Gain margin
 - ii. Phase margin
 - iii. The controller gain K₁ that makes the system just unstable.

[12 Marks]

b) Consider a closed loop control system below,

If $G(s) = \frac{10(1+s)}{s^2(5s+6)}$, H(s) = 5, and $r(t) = \left(1.9 + 4.6t + \frac{3.8t^2}{2}\right)u(t)$. Find the steady state error of the system using generalized error constants when subjected to an input signal given by r(t)

c) In a table format differentiate on the effects of a lead and lag compensator on a system.

[2 Marks]

QUESTION FIVE (20 MARKS)

a) A control system has the following open-loop transfer function;

$$G(s)H(s) = \frac{k}{s(s+2)(s+5)}$$

- i. Obtain the following;
 - 1. Asymptotes
 - 2. Breakaway point
 - 3. Imaginary axis crossover point
 - 4. The value of K for marginal stability
 - 5. Sketch the root locus diagram
- ii. Locate a point on the locus that corresponds to a damping ratio of 0.5 and find the value of K for this condition.

[12 Marks]

b) Using Routh-Hurwitz Stability Criterion, determine the stability of the system having characteristic equations below

$$s^5 + 2s^4 + 4s^3 + 8s^2 + 3s + 1 = 0$$

[6 Marks]

c) Highlight on at least two types of systems based on stability.

[2 Marks]