

(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATIONS ENGINEERING

COURSE CODE: ECE 314

COURSE TITLE: ANALOGUE ELECTRONICS I

DATE: TUESDAY 05/12/2023

TIME: 3.00 PM - 5.00 PM

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other TWO (2) questions

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

QN 1 [30mks]

- (a) With regards to amplifiers, distinguish between each of the following circuits; [2mks]
 - i) Direct Coupled and RC coupled amplifiers
 - ii) Class A and class B amplifiers
- (b) Consider the amplifier circuit of Fig.1

- i) Draw the small signal Hybrid equivalent circuit for Fig.1 [2mks]
- ii) Given that: $h_{re} \approx 2.5 \times 10^{-4}$, $h_{oe} \approx 25 \mu S$, $h_{fe} = 50$, $h_{ie} = 1000 \Omega$. Calculate:

i)	Input impedance of the amplifier stage	[3mks]
ii)	Output impedance of the amplifier stage	[3mks]
iii)	Voltage gain (A_v)	[2mks]

[2mks]

iv) Current gain (A_i) (c) For the circuit of **Fig. 1**, $V_{BE} = 0.7V$, $V_{CC} = +20V$, determine:

i) the d.c. loadline	[1mk]
ii) The operating point	[2mks]
iii) The a.c. loadline	[2mks]
iv) Sketch the DC and ac loadlines on the same graph	[1mk]

(d) Considering **Fig. 1** as class A, large-signal amplifier circuit. Calculate the:

i) Input power	[1mk]
ii) Output power	[1mk]
iii) Efficiency of the amplifier	[1mk]

(e) For **Fig. 1**, given that $\beta_{ac} = 200, V_{BE} = 0.7V, V_{in\,(ac)} = 25mV, V_{CC} = +20V$; determine the following:

i) Voltage gain	[2mks]
ii) Current gain	[4mks]
iii) Power gain	[1mk]

- (a) Using a well labeled output characteristic curve, explain how a JFET [10mks] operates as a constant resistor and a constant current source.
- (b) The N-channel JFET of **Fig. 2** has the following parameters on the data sheet: $V_{DD}=20V$; $V_{GSQ}=-2.6V$; $I_{DQ}=2.6mA$; $I_{DSS}=8mA$; $V_P=-6V$; $g_{os}=20\mu S$; $V_{GS}=-4.5V$; $V_D=12V$

(c) Determine the following:

i) The source resistance R _S	[4mks]
ii) Transconductance (gm).	[2mks]
iii) Drain-source resistance (r_d)	[1mk]
iv) Input impedance (Zi)	[1mk]
v) Output impedance (Z_o) with the effects of r_d	[1mk]
$vi)$ Voltage gain (A_V)	[1mk]

QN 3 [20mks]

- (a) i) State TWO salient features of class B amplifiers. [2mks]
 ii) Draw the circuit diagram of a typical class B push -pull amplifier and explain how it works. [3mks]
 - iii) Describe cross-over distortion in class B amplifiers using well labelled output waveforms. [3mks]
 - iv) Using a circuit diagram, describe how cross-over distortion is eliminated in class B amplifiers. [3mks]
- (b) A class B amplifier delivers a 20V peak signal to a 16 Ω speaker and a power supply of $V_{CC} = 30V$, determine:

i) The input power.		[1mk]
ii) Maximum input po	ower.	[1mk]
iii) Output power delive	ered to the load.	[1mk]
iv) Maximum output p	power delivered to the load.	[1mk]
v) Amplifier circuit eff	iciency.	[1mk]
vi) Maximum amplifie	er efficiency.	[1mk]
vii) Power dissipated by	both transistors at maximum power	[1mk]
input and output co	nditions.	
viii) Maximum pe	ower dissipated by both transistors	[1mk]
ix) The corresponding i	nput voltage for maximum power	[1mk]

dissipation by both transistors.

QN 4 [20mks]

(a) A class C tuned amplifier circuit diagram in Fig. 3 has the following components: $C = 0.125 \mu F$, L = 25 mH, $R = 30 k\Omega$.

Determine:

i) The resonant frequency. [2mks]
ii) Quality factor Q of the tank circuit. [3mks]
iii) Bandwidth of the amplifier. [1mk]

(b) Consider a two-stage RC-coupled amplifier network in Fig. 4

Determine the following:

i) Dynamic emitter resistances for the 1st and 2nd stages
ii) Voltage gain for the first stage of the network. [4mks]
[Take $\beta_{ac2} = 160$]
iii) Overall gain [3mks]

QN 5 [20mks]

- (a) By using circuit diagrams, describe the basic difference between the **[4mks]** Colpitts and Hartley oscillators.
- (b) With aid of circuit diagram, describe the operation of the RC Phase- [5mks] Shift Oscillator.
- (c) A phase shift oscillator with three RC stages uses 5 pF capacitors. [3mks] Find the resistance values that produce a frequency of 800 kHz.
- (d) Design a Hartley oscillator with appropriate inductor values such that the operating frequency, f = 1.5MHz, the feedback fraction $\beta = 0.2$, and a 1pF capacitor on the feedback circuit.