

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE:

ECE 251

COURSE TITLE:

PHYSICAL ELECTRONICS

DATE: TUESDAY 19/12/2023

TIME: 12:00 PM - 2:00 PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

CONSTANTS

$$k = 1.38 \times 10^{-23} J/K^0$$
 - Boltzmann's Constant

$$h = 6.67 \times 10^{-34} Jx K^0$$

- Planck's Constant

$$\varepsilon_0 = 8.57 \prod \times 10^{-12} F/m$$
 - Permittivity

$$m = 4 \prod x 10^{-7}$$

 $m = 4 \prod \times 10^{-7}$ H/m - Permeability

$$m_0 = 9.1 \times 10^{-31} Kg$$
 - Mass at Rest

QUESTION ONE

1. Explain and indicate the position of Femi Level in an intrinsic semiconductor (7marks)

- 2. An electron at rest is accelerating through a potential deifference of 100V. Calculate its final kinetic energy in:
 - i. **Joules**
 - Electron Volts ii)

 $4 \times 2 = (8 marks)$

- 3. Define and express the following terms;
 - i. Mobility
 - ii. Conductivity
 - iii.Electron Volt
 - iv. Peak Inverse Voltage
- 4. Distinguish between Zener breakdown and Avalanche Breakdown.
- 5. The current flowing through a p-n junction of Si diode in 60 mA for a forward bias of 0.9v at 300°K. Determine the static and dynamic resistance of the diode. (6marks)

QUESTION TWO

- 1. a) Using suitable and illustrations explain how an *n-type* semi conductor may be formed (8 marks)
 - b) Find:
 - i) The conductivity: and
 - ii) The resistance of a bar of pure silicon of length 1cm and cross-sectional area $1mm^2$ at 300^0K

For the requirements i) and ii) the following have been given:

$$\mu_n = 0.13 \text{m}^2/\text{v.s}$$
; $\mu_p = 0.05 \text{m}^2/\text{v.s}$
 $n_i = 1.5 \times 10^{16} \text{m}^{-3}$ and $e = 1.6 \times 10^{-19}$

(12marks)

OUESTION THREE

Figure 1

- a) In the *figure 1* V= 35V, $I_Z = 25mA$, $I_L = 5mA$. If the K'nee voltage of Zener diode is $V_{ZO} = 7V$ and its resistance $\sqrt{Z} = 6 \Omega$. Calculate the value of the resistance R. (8marks)
- b) State and outline basic factors determining rectifier performance. (6 marks)
- c) Derive that the ripple factor of half wave rectifier. (6marks)

QUESTION FOUR

- a) State Five postulates of an atomic model (5 marks)
- b) Derive the hole carrier density of an extrinsic material

$$P = \frac{Nd}{2} + \frac{N_d}{2} \left[1 + \left(\frac{2ni}{N_d} \right)^2 \right]^{\frac{1}{2}}$$
 (8 marks)

- c) A rectangular semiconductor specimen 2mm wide and 1mm thick gives a Hall coefficient of 10⁻²m³/c. When a current of 1mA is passed through the sample, a Hall voltage of 1mV is developed. Find;
 - i) The magnetic field

(4marks)

ii) The Hall coefficient

(3marks)

QUESTION FIVE

- a) A Silicon *p-n junction* diode operates at 27° C. If the applied forward bias is increased, the current I is doubled. Determine the increase in the bias voltage (Assume I >> I_S) (8mks)
- b) Briefly describe the principle operations of the following devices

i) Varactor Diode (4marks)

ii) Solar Cell (4marks)

iii) Switching Diode (4marks)