30

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

(MMUST)

UNIVERSITY EXAMINATIONS (MAIN PAPER)
2023/2024 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF SCIENCE IN MEDICAL BIOTECHNOLOGY

COURSE CODE: BMB 411

COURSE TITLE: ADVANCED NUCLEIC ACID

TECHNOLOGY

DATE: 5TH DECEMBER 2023

TIME: 8.00-10.00AM

INSTRUCTIONS TO CANDIDATES

This paper is divided into three sections, A B and C, carrying respectively: Multiple Choice Questions (MCQs), Short Answer Questions (SAQs) and Long Answer Questions (LAQs). Answer all questions. DO NOT WRITE ON THE QUESTION PAPER

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over

Page 1 of 4

1.	are vectors derived from Bacteriophages
	A. λ and M13
	B. lacZ ande EcoRl
	C. Retroviruses
	D. SCV40 viral vectors
2.	Yield increases if the recombinant λ DNA is packaged into phage particles <i>in</i>
	vitroλ vectors
	A. $10^5 - 10^6$
	B. $10^6 - 10^7$
	C. $10^7 - 10^8$
	D. $10^8 - 10^9$
3.	The size of λ gt11 is 43.7 kb, and the vector can therefore accommodate up to
	A. 5.2 kb
	B. 7.2 kb
	C. 6.2 kb
	D. 8.2 kb
4.	is a filamentous bacteriophage of male <i>E. coli</i>
	A. Phage λ
	B. Phage β
	C. pUC
	D. M13
5.	The Ml3 vectors consist of which modifications of the Ml3 wild type DNA
	A. lacI'OPZ' operon
	B. Sex pili
	C. F' episome
	D. lacZ gene
6.	Total length of STR markers is significantly shorter than VNTRs, usually between
	A. 100-450 bp
	B. 50-100 bp
	C. 70-100 bp
_	D. 100-200 bp
7.	Which one of the following is not a frequently used single-locus probes?
	A. D1S7
	B. D2S44
	C. D4S139
0	D. D5S111
8.	is among the most studied Papovaviruses
	A. M13
	B. SV40
	C. Autographa californica
	D. Baculovirus
9.	Retrovirus containas the genetic material
	A DNA

B. gag gene
C. RNA
D. env gene
10. In the construction of viral vector, most of the viral structural genes are deleted, but the
A. LTR and PSI
B. Hyg gene
C. pol
D. neo gene
11. The Hyg gene is for resistance
A. Ampicillin
B. Tetracyline
C. Karamycin
D. Hygromycine
12. The neo gene is for resistance
A. Ampicillin
B. Tetracyline
C. Karamycin
D. Hygromycine
13. Protein contamination can be removed by digestion with a proteolytic enzyme such as
during RNA isolation
A. RNase
B. Proteinase K
C. DNase
D. Lysozyme
14. The enzyme that completes the nick between the 3'-0H and the 5'-P by forming a
phosphodiester bond isand is
A. Restriction enzymes
B. Ligase
C. DNA polymerase
D. RNA polymerase
15. Enzymes that cut both DNA strands at the same position regulation is
B. Hanging
C. Cohesive
D. Blunt-end
16. In nick translation, the DNA fragment to be labeled is first nicked in a random manner by
A. Deoxyribonuclease I
B. RNA polymerase
C. Restriction enzymes

	D. Ligase	
17. <u> </u>	is a physical mapping technique which is used to determine the reocation of restriction sites on a DNA fragment: A. DNA fingerprinting	lative
	B. Genetic mapping	
	C. Restriction mapping	
1.0	D. Ligation is an important technique for the separation of macromolecu	les
18	A. Northern blotting	
	B. Western blotting	
	C. DNA isolation	
	D. Gel electrophoresis	
19. 7	The enzyme Pol I can be cleaved to produce a large fragment known as the:	
	A. Okazaki fragment	
	B. ssDNA fragment	
	C. Klenow fragment D. ds DNA fragment	
	D. US DIVA Hagment	
20.	is particularly useful for analyzing gene expression	
	A. Northern blotting	
	B. PAGE	
	C. Southern blotting	
	D. DNA polymerization	
SECTI	ION B: SHORT ANSWER QUESTIONS (40 MKS)	
1.	Outline the essential yeast chromosomal elements and their structural features	s [5 Marks]
2.	Distinguish between the lytic and lysogenic bacteriophage λ life cycle	[5 Marks]
3.	List the advantages of using short tandem repeats	[5 Marks]
4.	Describe how a Baculovirus transfer vector is constructed	[5 Marks]
5.	Explain the process of cell lysis in isolation of nucleic acids	[5 Marks]
6.	Describe what is artificial competence of cells	[5 Marks]
7.	Distinguish between high and low copy plasmids	[5 Marks]
8.	Explain the functioning of Klenow fragment	[J Warks
SECT	TION C: LONG ANSWER QUESTIONS (60 MKS)	
SECT	1. Elucidate the process of transfection and in vitro packaging phage λ DNA	A and
	recombinant λ DNA	[20 Marks]
	2. Using a diagram illustrate the production of retrovirus safe vector	[20 Marks]
	3. Discuss the process of nucleic acid purification	[20 Marks]