(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

KAKAMEGA (MAIN) AND KISUMU CAMPUSES

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

FIRST YEAR SECOND TRIMESTER EXAMINATIONS
FOR THE DEGREES
OF
BACHELOR OF SCIENCE IN MEDICAL LABORATORY SCIENCES, BACHELOR OF SCIENCE IN MEDICAL BIOTECHNOLOGY

COURSE CODE: BML 121
COURSE TITLE: Inorganic Chemistry
DATE: JULY
2018
TIME:

INSTRUCTIONS TO CANDIDATES

1. This paper consists of three sections A, B and C
2. Write your registration number only on the answer booklet
3. Write your registration number on every new leaf of the paper

TIME: 2 Hours
MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over
SECTION A: MULTIPLE CHOICE QUESTIONS (MCQs)

Instructions to the candidate

1. This section has twenty (20) multiple choice questions (MCQs)
2. Each question has a stem and four (4) options
3. Indicate the correct options(s) for each question by writing the corresponding letter
4. Use the provided university examination booklet only

SECTION A: MULTIPLE CHOICE QUESTIONS (MCQs)

Q1. Which of the following is not a qualitative method of chemical analysis?
a) Solvent extraction
b) Gravimetric analysis
c) NMR spectroscopy
d) Flame testing

Q2. From which of the following laws was the absolute temperature scale developed?
a) Charles' law
b) Grahams law of diffusion
c) Kinetic theory of gases
d) Boyle's law

Q3. The rate equation for a certain reaction is $R=k[A]^{2}[B]^{3}$. State the overall order of the reaction
a) 2
b) 5
c) 3
d) 6

Q4. The region inside an atom where an electron is most likely to be found is called
a) a sub shell
b) an energy level
c) a nucleus
d) An orbital

Q6. A Lewis acid is
a) A proton donor
b) A proton acceptor
c) An electron pair donor
d) An electron pair acceptor

Q7. When a covalent bond between two atoms of different electronegativity breaks?
a) Free radicals are formed
b) Ions are formed
c) Molecules are formed
d) All the above

Q8. Which of the following factors does not affect equilibrium position of a system?
a) Change in pressure of one of the reactants
b) Change in concentration
c) Change in pressure
d) Addition of a catalyst

Q5. A reaction is said to be of zero order with respect to a given reactant if
a) It results in no change in temperature
b) the concentration of the reactant reduces to zero by the end of the reaction
c) a change in concentration of the reactant has no effect on the reaction rate
d) all the reactants are used up

Q9. A positively charged ion is formed when
a) there are more protons than electrons
b) there are more neutrons than electrons
c) there are more electrons than protons
d) there are more electrons than neutrons

Q10. Elements in the same group of the periodic table have the same
a) atomic number
b) mass number
c) number of energy shells
d) number of electrons in the valence sub level

Q11. Magnetism that comes about as a result of paired electrons in a substance is called
a) Paramagnetism
b) ferromagnestism
c) ferrimagnetism
d) Diamagnetism

Q12. The oxidation number of Nitrogen in $\mathrm{N}_{2} \mathrm{O}$ is
a) 4
b) 1
c) 3
d) 2

Q13. The positively charged end of a polar molecule is called
a)
b) A cation
c) A nucleophile
d) A proton

Q14. Which of the following statements is true about a sigma bond?
a) It is formed when any two s orbitals have sufficient overlap
b) It is formed when any two p orbitals overlap head on
c) It is stronger than a pi bond
d) all the above

Q15. The spin quantum number specifies
a) The orientation of an electron in an orbital
b) The energy level on which an electron is found
c) The angular momentum of an electron
d) The sub shell on which an electron is found

Q16. It is impossible to find any two electrons in an atom with the same set of all four quantum numbers. This statement is famously known as
a) Hund's rule
b) Kletchkowski's rule
c) Pauli's exclusion principle
d) The rule of stability

Q17. How many electrons are required to fill all the orbitals in the fourth energy level?
a)
8
b) 32
c) 24
d) 60

Q18. Identify the atomic orbital pictured below

a) forbital
b) d orbital
c) s orbital
d) p orbital

Q19. Consider the chemical equation below

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathbf{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathbf{O H}_{(\mathrm{aq})}^{-}
$$

The species in bold on the left hand side of the equation is participating in the reaction as
a)
b)
c)
d)

A neutral solvent
A bronsted acid
Lewis acid
An arrhenius acid

Q20. An electrochemical cell in which electrical energy is used to make a non-spontaneous reaction to take place is known as
a)
b)
c)
d)

A galvanic cell
A voltaic cell
An electrolytic cell
A primary cell

SECTION B (40 Marks)

Q1. Use the standard electrode Potentials (S.E.P) in the table below to answer the following questions

Half Equation	S.E.P (Volts)
$\mathrm{A}^{2+}{ }_{(\text {aq })}+2 \mathrm{e}^{-} \rightarrow \mathrm{A}_{(\mathrm{s})}$	+2.8
$\mathrm{~B}^{+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \xrightarrow{\rightarrow} \mathrm{A}_{(\mathrm{s})}$	-1.5
$\mathrm{C}^{3+}{ }_{(\mathrm{aq})}+3 \mathrm{e}^{-} \rightarrow \mathrm{A}_{(\mathrm{s})}$	-3.3
$\mathrm{D}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{A}_{(\mathrm{s})}$	+0.7
$\mathrm{E}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{A}_{(\mathrm{s})}$	-1.1

a)
Calculate the E.M.F of the electrochemical cell that will be formed between half cells of the following elements (6 marks)
i.
A and D
B and C
D and E
Identify (3 marks)
The strongest reducing agent
ii.
highest tendency to gain electrons iii.
cells that would form an electrochemical with highest EMF
c)
would occur when an aqueous solution containing A^{2+} ions is kept in a container made of metal C (4 marks)

Q2. State one role of chemistry in medical laboratory sciences (1 mark)

Q3. State the first law of thermodynamics and provide the associated formula (2 marks)

Q4. Describe briefly how titanium is extracted from rutile ore (impure TiO_{2}) (5 marks) Q5. A gas occupies $50 \mathrm{~cm}^{3}$ at 27 K and 750 mmHg Pressure. Calculate the new volume if its pressure is adjusted to 800 mmHg and temperature decreased to 15 K (2 marks)

Q6. Write the electron configuration of the each of the following (6 marks)
a.
b.
Iron (28)
b.
Chromium ($\mathrm{Cr}=25$)
c.
$\mathrm{Zn}^{+}(\mathrm{Zn}=30)$

Q7. Solution K is prepared by dissolving 10 grams of sodium hydroxide in $500 \mathrm{~cm}^{3}$ of distilled water. $20 \mathrm{~cm}^{3}$ of solution K required exactly $7.5 \mathrm{~cm}^{3}$ of dilute hydrochloric acid for complete neutralization. Calculate the molarity of the acid used. (Molar mass of $\mathrm{NaOH}=40 \mathrm{~g}$) (4 marks)

Q8. Ammonia gas is prepared industrially by the Haber process by reacting nitrogen and hydrogen as shown in the equation below

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} \Delta \mathrm{H}=-92 \mathrm{~kJ} / \text { Mole }
$$

a) each of the following affects the yield of Ammonia (4 marks)
i. of the system
ii. system
iii. State and explain how decrease in temperature increase in pressure of the
formed form the system immediately its formed removing the ammonia
iv.
b)

State the optimum conditions for maximum yield of ammonia and justify your answer in each case (3 marks)

SECTION C (40 Marks)

Q1. Balance the following redox reaction in acidic conditions (10 marks)

$$
\mathrm{ClO}_{3}^{-}{ }_{(\mathrm{aq})}+\mathrm{SO}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

Hint: use the half equations method
Q2. Balance the following redox reaction in basic conditions (10 marks)

$$
\mathrm{Al}_{(\mathrm{s})}+\mathrm{NO}_{2}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{AIO}_{2}^{-}{ }_{(\mathrm{aq})}+\mathrm{NH}_{3}(\mathrm{aq})
$$

Hint: use the half equations method

Q3. A stock solution of sulphuric acid has the following specifications from the manufacturer
Specific gravity=1.3
Molar mass=36.46
Percentage purity $=36 \%$ to 38%
By showing all calculations involved, explain how you would prepare $800 \mathrm{~cm}^{3}$ of dilute HCl with concentration of $2 \mathrm{Moles} / \mathrm{Dm}^{3}$ (4 marks)

Q4. a) Calculate the pH of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (2 marks)
b) Calculate the pH of 0.5 M NaOH (2 marks).
c) Calculate the molarity of a certain strong acid $\mathrm{H}_{3} \mathrm{X}$ given that it has a PH of 2.5 (4 marks)

Q5. A buffer solution contains 0.10 moles of ethanoic acid and 0.13 moles of sodium ethanoate in 1 litre of solution. Calculate the pH of the buffer if ka of ethanoic acid is 1.8×10^{-5} (5 marks)

Q6. Calculate the normality of 0.321 g of sodium carbonate in 250 ml solution (3marks)

