(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR
SECOND YEAR FIRST SEMESTER EXAMINATIONS
FOR THE DEGREE OF
BACHELOR OF SCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

AND
BACHELOR OF TECHNOLOGY IN BUILDING CONSTRUCTION

COURSE CODE: CSE 251
COURSE TITLE: FLUID MECHANICS I
DATE: FRIDAY $12^{\text {TH }}$ FEBRUARY 2021 TIME: 9.00-1 1.00 AM

Instructions to candidates

- This paper consists of FIVE questions.
- Answer question ONE and ANY other THREE questions
- All symbols have their usual meaning unless otherwise stated
- Time allowed is TWO (2) hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 4 Printed Pages. Please Turn Over.

Question ONE \{Compulsory (25 marks) \}
a) Explain the following forms of equilibrium
i. Stable equilibrium.
ii. Unstable equilibrium
iii. Neutral equilibrium
b) Define and give the units of the following terms used in fluid mechanics (4 marks)
i. Specific weight
ii. Specific gravity
iii. Specific volume
iv. Kinematic viscosity
c) A uniform body of size 3 m long by 2 m wide and 1 m deep floats in water, Figure 1(c). Determine:
i. The weight of the body if the depth of immersion is 0.8 m
ii. The meta-centric height

Figure 1(c)
d) Find out the differential reading ' h ' of an inverted U-tube manometer containing oil of specific gravity of 0.7 as manometric fluid when connected across pipes A and B as show in Figure 1(d) below, conveying liquids of specific gravities 1.2 and 1.0 pipes A and B are located at the same level and assume the pressures at A and B to be equal
(6 marks)

Figure 1(d)
e) State Pascal's law for pressure at a point and using arbitrary small wedge shaped fluid element, proof the law

Question TWO (15 marks)

a) Explain the following types of fluids based on viscosity
(4 marks)
i. Ideal fluid (or perfect fluid)
ii. Newtonian fluids-
iii. Ideal plastic fluid (Bingham plastic)
iv. Plastic
b) A sluice gate is in the form of a circular arc of radius 6 m as shown in Figure 2(b) below. Determine the magnitude and direction of the resultant force on the gate

Figure 2(b)

Question THREE (15 marks)

a) Differentiate the following flow patterns
i. Steady and unsteady flow
ii. Uniform and non-uniform flow
iii. Laminar and turbulent flow
b) The velocity vector is given by $V=4 x^{3}{ }_{i}-10 x^{2}{ }_{j}+2 t_{k}$. Determine the velocity and acceleration of a fluid particle at $(2,1,3)$ at time $\mathrm{t}=1$

Question FOUR (15 marks)

a) State the hydrostatic law
b) The velocity distribution over a plate is given by: $u=\frac{2}{3} y-y^{2}$ in which u is the velocity in m / s at a distance of y metres above the plate. Determine the shear stress at $y=0$ and $y=0.15 \mathrm{~m}$. Take dynamic viscosity of the fluid μ as $0.863 \mathrm{Ns} / \mathrm{m}^{2}$ (5 marks)
c) A 7.2 m high and 15 m long spillway discharges $94 \mathrm{~m}^{3} / \mathrm{s}$ under a head of 2 m . If a $1: 9$ model of this spillway is to be constructed, determine:

i.	The model dimensions	$(2$ marks $)$
ii.	The head over spillway model	$(2$ marks
iii.	The model discharge	$(2$ marks $)$
iv.	The force on the prototype if model experiences a force of 7.5 kN	$(2$ marks $)$

Question FIVE (15 marks)

a) What is 'buoyancy'? State Archimedes' principle
b) Prove that the discharge over a spillway is given by:-

$$
Q=V D^{2}\left[\frac{\sqrt{g D}}{V}, \frac{H}{D}\right]
$$

Where V is the velocity of flow, D is depth of the throat, H is head of water and g is acceleration due to gravity
(12 marks)

