

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR

MAIN PAPER

FOR THE DEGREE OF BACHELOR OF MEDICAL LABORATORY SCIENCES (DIRECT ENTRY AND UPGRADING)

COURSE CODE: BML 221

COURSE TITLE: METABOLISM

DATE: 20th MAY 2019 TIME: 3.00 -5.00PM

INSTRUCTIONS TO CANDIDATES

This paper is divided into three sections, **A B** and **C**, carrying respectively: Multiple Choice Questions (**MCQs**), Short Answer Questions (**SAQs**) and Long Answer Questions (**LAQs**). **ANSWER ALL QUESTIONS**

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over

SECTION A

- 1. Cori's cycle transfers
 - a) Glucose from muscle to liver
 - b) Lactate from muscle to liver
 - c) Lactate from liver to muscle
 - d) Pyruvate from liver to muscle
- 2. What molecule results when ATP undergoes an exergonic reaction with water?
 - a. adenine triphosphate
- b. adenine phosphate
- c. adenosine diphosphate d. adenosine triphosphate
- 3. Phosphofructokinase 1, the major flux-controlling enzyme of glycolysis is allosterically inhibited by _ and activated by_.
 - a. AMP, Pi
- b. ADP, AMP
- c. Citrate, ATP d. ATP, AMP
- 4. Glucose is converted to which of the following high energy intermediates in glycolysis?
 - a. phosphoenolpyruvate
- b. 2,3-bisphosphoglycerate
- c. glucose-6-Phosphate
- d. fructose-6-Phosphate
- 5. Which of the following enzymatic reactions is an example of substrate phosphorylation?
 - a. hexokinase
- b. glucokinase
- c. phosphofructokinase d. phosphoglycerate kinase
- 6. Which of the following reactions is not a control point in the citric acid cycle?
 - a. Malate dehydrogenase
 - b. Isocitrate dehydrogenase
 - c. α-Ketoglutarate dehydrogenase
 - d. Citrate synthase
- 7. What do the enzymes citrate synthase, isocitrate dehydrogenase, and ketoglutarate dehydrogenase have in common?
 - a. All are enzymes that release carbon dioxide.
 - b. All are enzymes that utilize NAD+.
 - c. All are enzymes that catalyze reduction reactions.
 - d. All are enzymes with large negative free energies.
- 8. During electron transport, protons are pumped out of the mitochondrion at each of the major sites except for:
 - a. Complex I.
 - b. Complex II.
 - c. Complex III.
 - d. Complex IV.
- 9. Each cycle of β -oxidation produces
 - a. 1 FAD, 1 NADH, and 1 acetyl-CoA.

 b. 1 F ADH₂, 1 NADH, and 1 acetyl-CoA. c. 1 FAD, 1 NAD+, and 2CO₂ molecules. d. 1 F ADH₂, 1 NADH, and 2CO₂ molecules.
10. When it functions as a "second messenger", cAMP a. acts outside the cell to influence cellular processes. b. acts "second in importance" to AMP. c. activates all cytosolic protein kinases. d. activates the cAMP-dependent protein kinase.
11. The percent of cytosine in a double-stranded DNA is 21. What is the percent of thymine in that DNA? a. 21 b. 29 c. 50 d. 79
12. During starvation, ketone bodies are used as a fuel by a. Erythrocytes b. Brain c. Liver d. All of these
13. The number of ATP required for urea synthesis is a. 4 b. 1 c. 2 d. 3
14. The amino acid which is detoxicated by benzoic acid to form hippuric acid isa. Glycineb. Alaninec. Serined. Glutamic acid
15. Protein anabolism is stimulated by a. ACTH b. Testosterone c. Glucagon d. Epinephrine
 16. Activation of fatty acids requires all the following except a. ATP b. Coenzyme A c. Thiokinase d. Carnitine
 17. α-Oxidation of fatty acids occurs mainly in a. Liver b. Brain c. Muscles d. Adipose tissue
 18. De novo synthesis of fatty acids is catalyzed by a multi-enzyme complex which contains a. One-SH group b. Two-SH groups c. Three-SH groups d. Four-SH groups
19. In the purine nucleus, carbon 6 is contributed by a. Glycine b. CO ₂

- c. Aspartate d. Glutamine
- 20. An allosteric inhibitor of PRPP glutamyl amido transferase is
 - a. AMP b. ADP
 - c. GMP d. All of these

SECTION B

- 21. a. Explain the pathogenesis of acute pancreatitis (4mks)
 - b. Describe the role and significance of glutamine synthetase (4mks)
- 22. Discuss diabetic ketoacidosis (8mks)
- 23. Write a note on **Physiological fatty liver** (8mks)
- 24. Describe β -oxidation of fatty acids (8mks)
- 25. Discuss how **pyruvate dehydrogenase complex** is regulated (8mks)

SECTION C

- 26. Discuss the Hexose monophosphate shunt (**HMP-shunt**) (20mks)
- 27. Describe
 - a) Regulation of purine nucleotide biosynthesis (8mks)
 - b) Biosynthesis of cholesterol (12mks)

GOOD LUCK!!!