

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS

2012/2013

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE

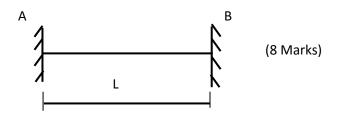
OF

BACHELOR OF SCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: CSE 212

COURSE TITLE: THEORY OF STRUCTURES II

DATE: TIME: 3 HRS.


INSTRUCTIONS TO CANDIDATES

Answer Question One and any other THREE

Question One (Compulsory)

(28 Marks)

- (a) Illustrate how the moment area theorems can be used to analyze statically indeterminate beams (6 Marks)
- (b) Derive the three-moment equation for a continuous beam with non-yielding supports (10 Marks)
- (c) Find expression for influence lines for the reactions M_A , M_B , V_A and V_B in the beam shown.

(c) State the assumptions made in linear 1st order analysis of structures (4 Marks)

Question Two (14 Marks)

- (a) Use three moment equation to analyze the beam shown if Figure Q2. (10 Marks)
- (b) Hence draw shear force and bending moment diagrams. (4 Marks)

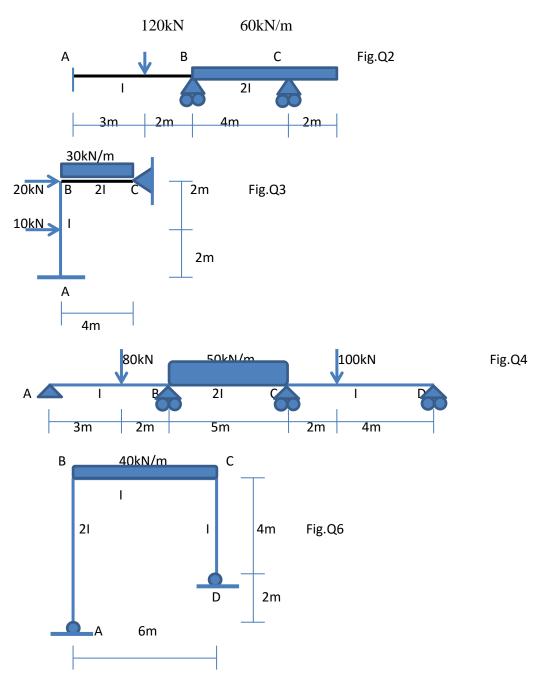
Question Three (14 Marks)

- (a) Use slope deflection method to determine the reactions at the supports for the rigid frame shown in Figure Q3. (10 Marks)
- (b) Hence draw shear force and bending moment diagrams. (4 Marks)

Question Four (14 Marks)

- (a) For the beam shown in Figure Q4 determine the reactions at the supports using moment distribution method. (10 Marks)
- (b) Hence draw shear force and bending moment diagrams. (4 Marks)

Question Five (14 Marks)


(a) A thin vertical strut of uniform cross-section and length L is rigidly fixed at the bottom and the top end free. At the top there is a horizontal pulling load P_1 and a vertical downward load P_2 acting through the centroid of the section. Prove that the horizontal deflection at the top is

$$\frac{P_1}{P_2} \left(\frac{\tan \mu L}{\mu} - L \right) \text{ where } \mu^2 = \frac{P_2}{EI}$$
(10 Marks)

(b) If $P_1 = 150N$ and $P_2 = 200kN$, L= 2m and EI = 2370Nm², find the maximum deflection and the moment at the support. (4 Marks)

Question Six (14 Marks)

- (a) For the rigid frame shown in Fig Q6, determine the reactions at the supports using strain energy method. Assume that there is no yielding at the supports. (10 marks)
- (b) Hence raw the shear force and bending moment diagrams. (4 Marks)

